Incremental Utility Elicitation with the Minimax Regret Decision Criterion
نویسندگان
چکیده
Utility elicitation is a critical function of any automated decision aid, allowing decisions to be tailored to the preferences of a specific user. However, the size and complexity of utility functions often precludes full elicitation, requiring that decisions be made without full utility information. Adopting the minimax regret criterion for decision making with incomplete utility information, we describe and empirically compare several new procedures for incremental elicitation of utility functions that attempt to reduce minimax regret with as few questions as possible. Specifically, using the (continuous) space of standard gamble queries, we show that myopically optimal queries can be computed effectively (in polynomial time) for several different improvement criteria. One such criterion, in particular, empirically outperforms the others we examine considerably, and has provable improvement guarantees.
منابع مشابه
Incremental Utility Elicitation with
Utility elicitation is a critical function of any automated decision aid, allowing decisions to be tailored to the preferences of a specific user. However, the size and complexity of utility functions often precludes full elicitation, requiring that decisions be made without full utility information. Adopting the minimax regret criterion for decision making with incomplete utility information, ...
متن کاملRegret-based Incremental Partial Revelation Mechanisms
Classic direct mechanisms suffer from the drawback of requiring full type (or utility function) revelation from participating agents. In complex settings with multi-attribute utility, assessing utility functions can be very difficult, a problem addressed by recent work on preference elicitation. In this work we propose a framework for incremental, partial revelation mechanisms and study the use...
متن کاملCooperative Negotiation in Autonomic Systems using Incremental Utility Elicitation
Decentralized resource allocation is a key problem for large-scale autonomic (or self-managing) computing systems. Motivated by a data center scenario, we explore efficient techniques for resolving resource conflicts via cooperative negotiation. Rather than computing in advance the functional dependence of each element’s utility upon the amount of resource it receives, which could be prohibitiv...
متن کاملRegret-based Utility Elicitation in Constraint-based Decision Problems
Constraint-based optimization requires the formulation of a precise objective function. However, in many circumstances, the objective is to maximize the utility of a specific user among the space of feasible configurations (e.g., of some system or product). Since elicitation of utility functions is known to be difficult, we consider the problem of incremental utility elicitation in constraintba...
متن کاملRegret-Based Optimization and Preference Elicitation for Stackelberg Security Games with Uncertainty
Stackelberg security games (SSGs) have been deployed in a number of real-world domains. One key challenge in these applications is the assessment of attacker payoffs, which may not be perfectly known. Previous work has studied SSGs with uncertain payoffs modeled by interval uncertainty and provided maximin-based robust solutions. In contrast, in this work we propose the use of the less conserva...
متن کامل